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Set Logics and Their Representations

Foat Sultanbekov’
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We examine a set logic by means of all its representations as a concrete logic
together with the automorphism groups of the representations. The most
important are the minimal representations, i.e., the ones defined by minimal full
collections of two-valued states. From this point of view we also investigate
some Greechie diagrams.

1. DEFINITION AND BASIC PROPERTIES OF THE
REPRESENTATIONS

Let E be an orthomodular poset (OMP) (Gudder, 1979; Kalmbach,
1983). Then E is referred to as a set logic provided S,(E) is full, S,(E)
being the set of all two-valued finitely additive states on E. A subset S of
S,(E) is said to be full if x, yeFE, s(x) <s(y)(seS) = x <y. A concrete
logic (Sherstnev, 1968) is a couple (£, X) where X is a set and £ is a
collection of subsets of X satisfying:

1. XekE.

2. AcE = X\A€kE.

3. A,BeE,AnB=g = AUBEeE.

Proposition 1.1. (Gudder, 1979; Ptak and Pulmannova, 1991). An
OMP E is isomorphic to a concrete logic iff £ is a set logic.

We call every concrete logic isomorphic to E a representation for E. A
representation (E, X) ~is called separating (Navara and Tkadlec, 1991) if
Vx,yeX (x #y) IAeE (xeA and y ¢ A). It is clear that (E, X) is separating
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iff the mapping x — 8, from X to S,(E) defined by

1 if xed
5"(’4)"{0 if x¢d

is injective. States of the form 6, are referred to as point states. For
example, if § < S,(E) is full, then we can obtain a separating representa-
tion for E if we put X =S and £ = {élecE}, where & = {seSls(e) =1}.
Conversely, if (E, X) is a separating representation for E, then S, (E) is full,
S, (E) being the set of all point states.

A representation (E, X) is said to be minimal providing S (E) is a
minimal (under inclusion) full collection of two-valued states. Obv1ously
(E, X) is minimal iff Vxe X 34, BeE (4 0 B = {x}). A trivial representation
for E is a representation E satlsfymg S, (E) S,(E).

The representations (£, X) and (F, Y) are called spattally isomorphic if
there exists a bijection f: X — Y such that f and /! are measurable, i.e.,
VAeEVBeF [ f(A)eF and f~(B)eE].

Let A(E) be the set of all atoms in E, E being an OMP. Then E is said
to be atomistic if VeeE [e = \/ {acA(E)|a < e}].

Proposition 1.2. {Gudder, 1979; Ptak and Pulmannova, 1991}. An
atomistic OMP E is isomorphic to a concrete logic iff Va, be A(E)
[afb = 3seS,(E); s(a) =s(b) = 1].

Let Aut E denote the automorphism group of E. If E is a set logic and
(E, X) is its representation, then AutE and Aut £ are isomorphic. An
automorphism heAut E is said to be carried by a point mapping providing
there exists f: X — X with A(4) =/ ~1(4) (4 €E). A representation (E, X) is
called A-regular if every heAut E is carried by a point mapping. It results
from Navara and Tkadlec (1991) that the following statement is valid.

Proposition 1.3. A representation E is A-regular iff Sp(if) is invariant
under Aut E.

Definition 1.4. A UR-logic is a set logic which has only one represen-
tation (up to a spatial isomorphism). A UMR-logic is a set logic all of
whose minimal representations are spatially isomorphic. We call a set logic
E A-regular if its every minimal representation is A-regular. We call E
A-singular in case the trivial representation for E alone is A-regular.

Let us give examples of UR-logics. Suppose k, meN, k 22 m 2 3, and
X is a set with card X = km. Then X(km, k) ={4d cX {card A is a multiple
of k} is a UR-logic (Sultanbekov, 1991).

A representatlon (E, X) is called regular if every finitely additive signed
measure on E can be extended to a finitely additive signed measure on the
algebra [say, a(E)] bf subsets of X generated by E. Let us denote by V()
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the vector space of all finitely additive signed measures on ~E~ A polar
(Ovchinnikov, 1991) of E is defined by £°= {ueV(a(E))|Ve E(ud = 0)}.
The following theorem turns out to be very helpful.

Theorem 1.5 (Ovchinnikov, 1991).~ Let E be a finite set lclgic. A
representation (E, X) is regular iff dim £° + dim V(E) < card A(a(E)).

Proof. Observe that a(E) can be obtained from £ by two extensions:

()= { ) 4.keN, 4, GE}
i=1
and
k
a(E) = (EM)v = { U B/keN, BjeEﬂ}

=1
Since E is finite, it follows that a(E) is also finite. It is easy to prove
that any finite algebra of subsets of X can be generated by a finite parti-
tion of X. Suppose X =|J{X;|i=1,...,n}, XinX,=Q( #)), X;#
SBi=1,...,n), and {X;,...,X, generates a(E). Then A(a(E))=
{X;,.. X } Since every ue V(a(E)) is defined by its values on the atoms,
we get d1m V(a(E)) = n. Consider a linear mappmg L: V(a(E)) - V(E)
defined by L(u) t|z. Obviously Ker L = E°. Clearly E is regular (ie.,
Im L = V(E)] iff diim Im L > dim V(E). The latter is valid iff

dim V(E) + dim E° < dim Im L + dim Ker L = dim V(a(E)) =n

Remark 1.6. As is obvious from the above proof, in Theorem 1.5, we
may replace the inequality by the equality.

The regularity (A-regularity) of representations is invariant under
spatial isomorphisms. At the same time, in general it is not invariant under
arbitrary isomorphisms. That stimulates us to give the following defini-
tions.

Definition 1.7. A set logic E is called absolutely regular if its every
representation is regular. It is called singular provided its every representa-
tion is not regular.

Clearly E is absolutely regular iff its every minimal representation is
regular and is singular if its trivial representation is not regular.

2. MINIMAL REGULAR REPRESENTATIONS FOR SOME
GREECHIE DIAGRAMS

Denote by E, (n =2 4) the OMP whose Greechie diagram (Greechie,
1971; Gudder, 1979) is an n-polygon [in Kalmbach (1983) it is called a
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loop] which has three atoms on each edge. We suppose the polygon to be
proper. Let us denote by Py, P,,..., P,_, the vertices of the n-polygon.
Denote by Q, the middle atom between P; and P, ,. By L, we denote the
OMP whose Greechie diagram can be obtained from E, by deleting 0, ;.
These atomistic OMPs satisfy the requirements of Proposition 1.2 and thus
are set logics. We denote by Ext S(E) the set of all extreme points of
S(E), S(E) being the set of all states on E. Next, I, =card S,(L,) and
e, = card S,(E,).

Remark 2.1. A state on E, or L, is obviously defined by its values on
Py, P,,...,P,_,. For two-valued states we will list the vertices evaluated
to 1 alone.

Theorem 2.2. (1) The generators of Aut E, are ¢ and g¢,, where
WP;) =Py, (Q:) = Qi1 (a translation), go(P;) = P_,, and ¢4(Q;) =0 _;
(a symmetry). The generators of AutL, are g and r, where ¢(P,)=
P, . 1,90Q)=0,_,_, rtransposes P, and @, and leaves invariant the
other atoms (all indices are modulo n).

(2) ExtS(L,) = S,(L,), BExtS(Ey)=S,(Ex), and ExtS(Ey )=
S>(Ey 1)V {e}, where e(P,) =05 (i =0, ..., 2k).

(3) I, and e, form Fibonacci sequences with [, =2, , =3, ¢, =1, and
e;=3.

Moreover,

e,1=1,,_1+1,,_3=<1 +2ﬁ)"+(1 “ﬁ)"

2

2+J§(1+ﬁ>"-‘ ﬁ—z(l —ﬁ)H
[, =—2— +
\/§ 2 \ﬁ 2

Proof. (1) Since any automorphism is obviously defined by its values
on vertices and neighboring vertices are carried to neighboring ones, the
assertion for Aut E, follows. As to AutL,, it suffices to notice that
P, ,P,...,P,_, have to be evaluated to P, P,,...,P,_, or
P,_5,P,_5,...,P and the action of Aut L, on {Py, Qo, P,_;.Q,_,} is
transitive.

(2) It was proved in Ovchinnikov (1985) that Ext S(E,.) = S,(Ex)
and eeExt S(E,; . ;). The rest is straightforward.

(3) There is a natural bijective correspondence between elements of
S,(E,) and subsets of {Py, Py,..., P,_,} containing no neighbors. The
assertion follows from Aigner (1979) and Vorobjov (1978).

Theorem 2.3. (1) If n = 7, then E, admits a nonregular, minimal, and
A-regular representation. The OMPs E,, E; and E; are absolutely regular.
(2) The set logic L¢ is A-singular.
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Proof. (1) Denote by X the set of all elements of S,(E,) that equal 1
on two vertices alone. Let us show X to be suitable, ie., E=

{PJl =0, 1}u{Q~1§l— ,n—1}, where P, ={seX|s(P,) =1}
and 0, = {s eX |s(Q,) =1} is the requlred representation. The set X can be
separated into orbits, X, k =2, 3, ..., [n/2], under Aut E,, and X, consists

of all elements of X whose central angle between the vertices evaluated to
1 equals 2nk/n. Obviously card X, =n (k=2,3,...,[n/2]) for an odd n
and card Xk =n(k=23,...,n/2—1) and card X, , = n/2 for an even n.
Since all ;A P, (|l - m| > 1) are singletons, it follows that E is minimal.
Let us verify that 0,n0,, # &. The required se(,n@,, can be con-
structed as follows. Suppose the diameter orthogonal to the chord between
Q, and Q,, meets E, in the atom R opposite the chord. Then se X, whose
central angle covers R is suitable. Finally, P,n(,, # & (|- m|> 1): take
acX, with s(P;) =1 whose central angle does not cover (,. Then
seP,nQ,.

Obviously X is invariant under Aut E,. Hence by Proposition 1.3, £ is
A-regular.

Every vertex P, contains two states from each X, provided » is odd. In
case # is even P, contains two states from X; (k =2,...,n/2—1) and one
state from X,,,. Suppose E is regular. Then every s1gned measure y on £ is
defined by a suitable f: X —» R as follows:

wA) =Y fx) (dek)

xeAd

Consider the state p on E, defined by u(P,) =0 (I=0,...,1). Then

n—1

0= Z pP)=2 3 f)+2 Y fD)+-+2 Y fx

x€X, xeX3 xeX[n/2]

=2 3, f&x) = 2u(X) =
This is a contradiction.

Let us now show Eg to be absolutely regular. Define two-valued states
dg, do, by, co, and e by ag(P)) =ao(Ps) =1, dy(Py) =do(P;) =1,
bo(Py) =1, co(Po) = co(Py) =co(Py) =1, and e(P,) =0 (I =0,...,5). Let
a,, dy, b,and ¢, (I =1,...,5) be products of ay, dy, by, and c, with 1 ~/, ¢
being the automorphism from Theorem 2.2. Then a={a,,q,,...,as},
b={by,by,...,bs}, d={dy, di,d}, e={cg, ¢}, and {e} exhaust all the
orbits in S,(Fs) under Aut Es. For each couple (/, m), put P(l, m)=
{s€S,(EgJs(P)) =5(P,)) =1}, O, m) = {s€ S,(EQ)|s(Q,) = 5(Q,,) = 1} and
PO, m) = {s€S,(Eq)|s(P;) = 5(Q,,) = 1}. Obviously X < S,(E) is full iff

XnPUmy+#Z, Xn0Um+#d, XnPOU,m +#J
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for all suitable /, m. Making use of this criterion let us describe up to a
spatial isomorphism all minimal representations for Eg. Since
Pli1+3)= {d,}, it follows that every representation contains d. For
brevity we write ay,, instead of {a,, a,, a,}. Then full sets of two-valued
states for the minimal representations are the following:

(1) avdu{e}, dUag,bg,u{c}-

(i) bucud

(iii) awd U bgyy, ooV dUbgs U {co, €}, by duagg e

(iv) audUbyiss, Bo123 I AU bg3s UC, Ggy34 U U bg134 U, dgip34Y
dUbgzu{ce}.

Thus only two of ten minimal representations are A-regular. They are
audu{e} and buduec. It is straightforward that all the aforementioned
ten representations are regular.

(2) We have S,(L¢) = S,(Es) v{fo, /1. />}, where f, equals 1 in ver-
tices Py, P;, and Ps, f; in Py and Ps, and f; in P, P,, and Ps. By the table
of products of two-valued states with generators of Aut L;, we obtain all
orbits in S,(L¢) under Aut Lg:

a1V by Ldyy U S b05u{e,f1}; Ggs I byy; a3 \J Coys {dl}

NCXt’ F(L 3) = {5125 cl}’ ﬁ(L 4) = {dl}i FQ(L 3) = {fl09 bl}’ @(25 3) =
{a;,ds, f,}, and Q(1, 3) = bysU {e, f1}. Therefore, if (E, X) is an arbitrary
representation, then X has a nonempty intersection with each orbit listed
above. Thus, if £ is in addition 4-regular, then X contains all these orbits.
Hence X = S,(L¢) and E is trivial. The theorem follows.

Theorem 2.4. There exists a minimal, 4-regular and regular representa-
tion (E, X) for E, with card X = An, 1 < <2 + 1/n. Moreover, there exists
a numeration of elements of the orbits in X under Aut £ such that the
generators of Aut £ are carried by the point mappings x> x;., and
XX _ ;.

Proof. According to Proposition 1.3, X needs to be a union of orbits.

Case 1. Eyp, | (k=4); A=2+1/(2k +1). Let 4, be the two-valued
state with a,(P,)=1 for i=0,2,4,...,2k —2, and b, be the one for
i=0,2,4,...,2k—4. Put a,=a,-t7 and by=by-t™/ (j=1,...,2k).
Since a, and b, are symmetric with respect to certain diameters, it follows
that a={ay,...,ay} and b={by, ..., by } are orbits. In what follows
indices for @, and b, are taken modulo 2k + 1. Let ¢ denote the state
evaluating any vertex to 0. Put X =aubu{c}. Then we get card X =
4k + 3.

Define T: X » X by Ta;=a;,,, Th;=b;,,, and Tc =c. Consider a
concrete logic £ on X with Py = agss. .. g 1 Ubos7 .. 2k — 1> Qo = ba3a U {2, ¢},
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P, =T"(F,), and @, = T"(Qo) (n =1, . . ., 2k) as atoms. To prove £ to be
a representation for By it sufﬁces to verify that Qom Q,, #
n=1,...,2k), PnP,#g% m=2,...,2k—1), and P,n0,#
(n=1,...,2k—1)

We  have P “an3+n 2k—1+nUbn5+n ..... 2k—1+n- If ne{2
2k—1} is even, then a,, ,eP,n P,. If n is odd, then a,e P~ P,. We have
0, —-b2+n3+,,4+,,u{a2+n, ct. If ne{l,2,...,2k—1} is odd, then
a,,€P,nQ,. If nis even, then b3+,,eP0r\Q,, Finally, ce0,n 0, for
arbitrary n.

The minimality of the representation follows from By~ P, ={a;},
PynQ,= {bs}, and 0on 0y = {c}.

Let us prove the representation to be regular. Since the representation
is minimal, it follows that a(E) consists of all the subsets of X. Therefore,
by Theorem 1.5, it suffices to show that

dim E° < card X —dim V(F) =4k +3 - (2k +2) =2k + 1

Every ueV(a(E)) is defined by o; = pu(a;), B; = u(b;), and y = u(c). By the
definition of a polar, we have

2%k 2%
S o+ B+y=0 (1
j=0 j=0
and
aj+053+j+'"+(x2k_1+j+ﬁj+ﬁj+5+"'+ﬁ2k‘1+j=0

(j=0,...,2k (2)

and
aj+.3j+ﬁj+1+ﬂj+2+7’=0 (j=0,...,2k) (3)

Summing the equations (2), we obtain k) o +(k —1)Y;B;=0. By

(D, y = —(l/k) Y. B;. Therefore, (3) implies 7y, aelin{fy, ..., B}
(j= ., 2k). Thus we get dim £° < dim lin{B,, ..., B} <2k + 1.

Case 2. Ey, (k25); A=3/2. Put 4, ={k =5k £0 (mod(4m — 1))
and k =0 (mod(4r — 1)), VreN,r <m —1}. Then {4,,|meN} is a parti-
tion of {k|keN and k = 5}. Observe that if k # 6, then

VmeN (ked,, = k24m + 1) (*

Let a, be a two-valued state defined by a,(P,) =1(i=0,2,4,...,2m—2,
2m+1,2m+3,2m+5,.... 2k —-2m+ 1),2k —(2m —2),2k—2m, ...,
2k — 4,2k —2). Let d, be a two-valued state with dy(Py) = dp(P,) = 1. As
in Case 1, making use of ¢, we get two orbits of Aut E,;: a= agpp..0_ and.
d =dj,. . _,; for a; (d;) the indices are taken modulo 2k (k). Put X =aud.
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Then card X = 3k. Let T: X — X be defined by Ta;, =4, ., and Td, =d, .
Put

and
Qo= Gk — 2m+ 1Y oz — 1

P, and §, are defined as above.

Let us demonstrate that 0,nJ,nd # . Since card §,nd =k —2
(i 20), it follows that {2,3,....k—1}n{2+L3+/,....k—1+1}=¢
implies card{2,3, ...,k —1}U{2+ L3+ ..., k—1+1}=2k—42k+1.
Thus there exist ne{2,3,...,k—1} and pe{2+L3+1 ..., k—1+1}
satisfying # = p (mod k).

Let us now show that BonJ,# & (I=1,...,2k —2). We have

Obviously if /#k —1 and l;ék, then there exists pe{Z +L3+1...,
k — 141} such that p =0 (mod k) and therefore dyePynQ, If 1=k —1
or [ =k, then by (*), we get 2m +k — Lk —2m}n{2m+1,2m +3,...,
2k -2m—1}#g and {Cm+kk-2m+1}n{2m+1,2m+3,...,
2k —2m — 1} # F. Therefore, PonQ,na# &. In the case k =6 and
m =2 the proof is straightforward.

Consider

If Ie{3,5,...,2m + 1}, then PonP,ma,2+, om—241 . I 1e{2m + 3,

,,,,,

2m+5,. 2k — 3}, then By Brnay, am g2+ 1,.2—2+1 # (. Suppose /s
even. If le{2 4,...,2m— 2} then a,eP,nP,. If Ie(2m,2m +2,.
4m — 4}, then Ay 2m+2+,eP0r\P, If I =4m — 2 or | = 4m, then we have
Qo 1+ ,ePomP, [use (*)]. Finally, ifle{dm +2,4m +4,...,2k — 2} then
G —om—14:€Py"P,. If k =6 and m =2, then the 1nequa11ty PnP -
is straightforward.

The representation is minimal since PynQ,={d)} and PynQ, =
{@ —mir1} OF Py Gy = {341}

Let us show the representation to be regular. Put o; = u(q;) and 6, = u
(d;). For a; (6;) the indices are considered modulo 2k (k). By the definition
of a polar we obtain

2k — 1 k—

T g+ T =0 (4

j=0
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AR IR R PGS o SSNE IS ps S 7Y S S g

Oy gy +0,=0 (j=0,...,2k~1) (5)
Umsjt 0ok amir4jt0aq;+ Oy ;=0 (j=0,...,2k—1)
(6)

If we sum equations (5), then we obtain (k —1) Y, o, +2 3 ;6; = 0. By (4),
this gives Y ;o; =Y ;§; = 0. Therefore, the system (6) gets the form
a0+aAm—l =52m—1 +52m
fx'l -+ X = O + O 41 (6)
Uop— 1+ O — 2= Oappsa + Oom
Since keA,, and thus k£ #0 (mod(4m — 1)), it follows that if we take
equations of (6’) with numbers 0,4 — 1, 8m — 2, . .. (we consider the addi-
tion modulo 2k), then we obtain all the equations of (6"). Therefore, we get
o =(—1Yap+g (j=1,2,...,2k—1) with g;elin[dy, d,,...,5;_;]; then
the first equation in (5) implies moay—[k—1—(2m — Do+
(m—1og+06,+Y g =0 and hence (k+1—4ma,=35,+ g. Thus
forallj=0,...,2k — 1 we have a,elin{d,, ..., 0, _,}. Since Y =7 6, =0,
we get

dim E°<dim lin{d,, ..., 8;_,} <k —1=3k —(2k+1) =card X —dim V().

Case 3. E,(n=4,5,6,7,8). For E, or Es the required representation
is obviously unique. We have already examined Eg in Theorem 2.3. For E,
the required representation is given by the two-valued states a, and b,, where
a(P)=1 (i=0,2,5) and by(Py) = 1. Finally, for E; it suffices to take
ay(P)=1(j=0,3,5), dy(Py) =dy(Py) =1, and ¢(P;) =0 (j=0,...,7).
The values for A and card X are given in Table 1.

The theorem follows.

Remark 2.5. For Eg 5 (k 2 1) we can also take A =1+ 4/(6k + 3).
Consider the two-valued states defined by a(P;)) =1 (i=0,2,4,...,
6k —2), by(P;) =1 (i =0(mod 3)), and c(P;)) =0 (i=0,...,6k +2).

Table 1.
n card X A
4 7 1.75
5 10 2
6 10 1%
7 14 2
8 13 1.625
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